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Editor’s introduction

This column continues the excellent series of articles on the
geometry and comparisons of dual-reflector antennas by
Christophe Granet, His earlier contributions, in 1998, provided
readers with equations to determine the parameters of dual-reflec-
tor antennas, which I recommend you review and make a part of
your design toolbox. I will still send you the FORTRAN source

code for those equations, reduced to a series of subroutines, if you
send me an e-mail,

It is not necessary to review his earlier articles, in 1998,
because the article below stands alone. The displaced-axis reflector
is & compact antenna, suitable for communication antennas. It has
high efficiency and a compact geometry. Christophe provides us
equations for geometries other than the one presented in 1997,
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1. Abstract

A simple procedure for the design of classical displaced-axis
dual-reflector antennas is given. Using four geometric input
parameters, a set of equations is derived to find the remaining
geomelric parameters, fully defining the systems. This initial
geometry provides a good starting point for any optimization proc-
€ss.

2. Introduction

he standard displaced-axis dual-reflector antennas are special
cases of the Gregorian or Cassegrain systems, in which the
focal axis of the main parabolic reflector is displaced from the axis
of symmetry. The prime focus of the elliptical or hyperbolic subre-
flector is also located on this axis, and not on the axis of symmetry

[1-4].

A dual-reflector antenna system can be deseribed using a
finite set of simple geometric parameters [5]. The geometric
parameters necessary to design circularly-symmetric displaced-axis
dual-reflector antennas are presented in this paper, using four input
parameters. In this paper, only classical systems are presented: no
special shaping of the reflectors is taken into account.

There are four options available:

e Option 1: a displaced-axis Gregorian antenna with a single off-
sef (see Section 5.1).

e Option 2: a displaced-axis Gregorian antenna with a double
offset (see Section 5.2).

e Option 3: a displaced-axis Cassegrain antenna with a single
offset (see Section 6.1).
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e Option 4: a displaced-axis Cassegrain antenna with a double
offset (sec Section 6.2).

By single offset, we mean that the distance between the bottom of
the half-subreflector used and the bottom of the half-main-reflector

used is of the order of 1x (DS /2) {as in Figures 1 and 4), while for

a double offset, it is of the order of 2x(D,/2) (as in Figures 3 and
0).

3. General geometry of a displaced-axis dual-reflector antenna

In a dual-reflector configuration, it is customary to define the
main reflector and subreflector in their own coordinate systems,
(Opis X, Yagr - Zpr) and (Ogp, Xgp Yp, Zgg ), respectively,
and to have a general antenna coordinate system (G, X, Y, Z)in
which the main reflector and subreflector are finally expressed.
Note that in the four antenna arrangements we are proposing,
Oy = Ogr= 0.

As for the classical Cassegrain and Gregorian systems [5], we
are dealing with a system of eight parameters defining the overall
geometry of the antenna, namely: D,,, F, D,, 8,, L,, L, a,
and f, where (see Figures 1 to 6):

. diameter of the main parabolic reflector
F: focal distance of the main reflector

D, : diameter of the subreflector (elliptical or hyperbolic)

@, : uangle between the Z axis and the ray emanating from the

focus, I, of the antenna in the direction of the subreflector
edge

L,,: distance between the focus, /), of the antenna and the

projection of the bottom-edge of the half-main-reflector onto
the Z axis
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Figure 1. A cross-sectional view of a single-offset Gregorian
displaced-axis dual-reflector antenna,
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Figure 2a. A cross-sectional view of the elliptical-subreflector
coordinate system with its parameters.

Fo

Figure 2b. The distance relationship in an ellipse.
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Figure 3. A cross-sectional view of a double-offset Gregorian
displaced-axis dual-reflector antenna.
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Figure 4. A cross-sectional view of a single-offset Cassegrain
displaced-axis dnal-reflector antenna,

Figure 5. A cross-sectional view of the kyperbolic-subreflector
coordinate system with its parameters.
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Figure 6. A cross-sectional view of a double-offset Cassegrain
displaced-axis dual-reflector antenna,
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distance between the focus, /4, of the antenna and the apex
of the subreflector

a and f : parameters defining the geometry of the subreflector

These parameters, however, cannot be specified arbitrarily. We
choose four input parameters to define the anfenna, namely, D,,,
F, D, and @,, and then calculate from these the other design
parameters in closed form.

Other intermediate geometric parameters, used in finding the
remaining four parameters (L,,, L,, a and f) and defining the
dual-reflector geometry, are:

¢ offset angle between the main-reflector coordinate system
and the subreflector coordinate system (the angle between
(O: ZMR) and (Osz,s‘i{ ))

w: angle from the axis of the main reflector to the top edge of
the main reflector in the main-reflector coordinate system

& . angle from the axis of the main reflector to the bottom edge
of the main reflector in the main-reflector coordinate system

d: offset parameter for designing the antennas for Options 2, 3,
and 4.

For the definition of the main-reflector geometry, we consider only
the upper part of the (O, Xy, Zun) plane. The main-reflector
profile, z,, (x,, ), depends on the real parameter [, and is of the
form

2
X
Zow (xmr) = ( ‘;:;,) -, (1)
with
0L K,y S &;& , (Option 1)
Dy -2d = Xy S Dy =24 ) (Option 2}
2 2
Dy +2d £x,, < Dy+2d , {Option 3)
2 2
D, +d<x, < W . (Option 4)

The subreflector profile, z,, (x, ), is defined in the (O, X gz, Zgz)
plane, and depends on the two real parameters ¢ and . 1t is of
the form

Zsr(xsr)zﬂ 1+(Lsr):_"f- @

gt
We have three possibilities:

e 0<g<j:Inthis case, z,, represents a hyperboloid with axis of
symmetry about the Zg, axis, and with a focus at the origin of
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coordinates. The parameter f is half the distance between the
focus and its image, and a is half the distance between the
hyperboloid and its image, measured along the Zgp axis. The

eceentricity is ¢ = i
a

e g> f>0:In this case, z,, represents an ellipsoid with axis of
symmetry about the Z¢, axis, and with one focus at the origin

of coordinates. The parameter f is half the distance between
the foci, and @ is half the major axis of the ellipse. The eccen-

f

tricity is e = =,
a

® o=0:1Inthis case, z, represents a plane patallel to the (Xgp,

Yop } plane, with all z, coordinates equal to ~ /.

r

The points defining the subreflector are such that when x,, is
expressed in the main-reflector coordinate system,

- <0 (Option 1}

Dy
B
2 " [xl‘"']EApressnd in the MR coordinate systest =

D_\‘ +2d ]
2 - [x-”’ Expressed in the MR coordinate sysiem

< —d (Option 2)

< D, +2d

sr ]Exprcjsed in the MR coordinate system 2
(Options 3 and 4)

dﬁ[

It is then easy to express the subreflector in the main-teflector
coordinate system using the angle @, and to then express both
main reflector and subreflector in the antenna-coordinate system
(G,X,Y,Z). The only task remaining is to consider the antenna
to have a circularly-symmetric shape, i.e., to rotate the geometry
around the (G, Z ) axis.

4. Properties of displaced-axis dnal-reflector antennas

In these arrangements, the main reflector will have a focal
ring instead of a focal point. The subreflector will also have a focal
ring, with one focus located at the focal ring of the main reflector,
and the other at the focus of the antenna (the phase center of the
feed).

Because of the displaced-axis geometry, there is no blockage
by the subreflector, and this property also improves the feed mis-
match caused by the reflections from the subreflector. It also per-
mits the use of a smaller subreflector in closc proximity to the feed,
reducing rear radiation because of the small /D, ratio [2].

In designing the antennas, we are using three main properties
of Cagsegrain/Gregorian systems:

e For each system, the path length is the same for any ray from
the focus, Fy, to the aperture, Le., using the exireme rays, we
have (see Figures I, 3, 4 and 6):

ARl +|aQl k] =R+ B0 +[GR] 3

e The distance relationship in an ellipse gives [6] (see Figures 2a
and 2b):

¢ The distance relationship in a hyperboloid gives [6] (see Fig-
ure 8):

IyP|+|oP| = 2a

1P| =|oP| = 2a

5. Displaced-axis Gregorian antennas
5.1 Option 1: Single-offset Gregorian

Figure 1 shows the geometry of the antenna. To understand
how this geometry has been derived, we start with the cross-section
of a Gregorian duai-reflector antenna. The main reflector is para-
bolic, and the subreflector is a portion of an ellipse. The two foci of
the subreflector are located at the focus of the main reflector and at
the phase-center of the feed, In a Gregorian system, the rays emit-
ted by the feed are inverted, so that the lower portion of the subre-
flector reflects the incident rays to the upper section of the main
reflector.

Most of the work in this section is based on [1]. From the
four input parameters (D,,, F, D;, and 8,), and using the fact
that the path length is the same for any ray from the focus to the
aperture, along with formulas related to paraboloid, hyperboloid,
and ellipsoid [6], we find

Lo FD, D cos(GL,)ﬁ-l )
" D,-D, 4 | sin(8,) |’

2
tan(¢) = cos(6)11_ 4F ®

sin{6,) D, -D,

DS
f—m, (6)
SF(D,,,—DA.)
t =5 7
an(y) o, #DS)ZQIGFz (7
I,=2 fcos(¢)+~2-£-f(—w), (8)
_ D[ cos(d,)+1 FD,
4773 { sin(6,) ]+2(D,,,—Ds)' @

We have now defined all the parametets necessary to represent the
displaced-axis Gregorian single-offset dual-reflector antenna sys-
tem (note that =0 and § =0),

5.2 Option 2: Double-offset Gregorian

The geometry of such a system is shown in Figure 3, where a
parabolic main reflector is used in conjunction with an elliptical
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Table 1, Optidn 2: The coordinates of the points for the
donble-offset Gregorian system.

Point x z
g Dy -2d (D, —24)"

2 16F
& D, -2d (D, —2dY’ p

2 16F
B D, +2d o

_( 5’2 J (Ds'f"Zd) l:@%ji-ﬁ':l
- Dm ~2d .
P2 "d _ 2
2d [(DS 24) —FJ
165
- D,-2d
F -d R
(D, +24) {(ﬂl—ﬁjﬂ }
B D
D, -2d Ztan{6,)

R, D,-2d 0

2
R, D -2d 0

2

subreflector in a double-offset atrangement. The input parameters
are again D, , ¥, D, and 4,, and we will express the remaining
design parameters in terms of these input parameters.

The ray-tracing in this system (see Figure 3) is given by
Equation (3). For this option, the coordinates of the points /p, A,
B, O, Oz, Ry, and Ry inthe (O, Xyp, Zyp) coordinate system
are given in Fable 1. Using Equation (3) and the coordinates of the
points in Table 1, we find a function, T", which depends only on
the variable ¢ (and uses D,,, D,, F,and &,).

me

The first step of the design is then to solve the equation

T(d)=|RA|+ R+ Q& - |FoPs] - [P0, | @25 = ©
(10)

with a simple solver, and to use the root, &, of I" in the following
relations (see Figure 3);

8F (D, -2d

tan(w)=*—3(—m~—ig, an

16F<—(D, -2d}

2 2
1= +Ds+2d_d[16F +(D’_2d)] (12)
* 2sin(6,)  2sin(y) 8F(D,-2d) '
D, -2d4Y 16dF*-d(D,-2d)
Lsz“( s —2d)" 16dF" -d(D;-2d) 1, 1%

16F 8F(D,-2d)
_ D D+2d :
=25 il 7R 1
¢ 4sm(ae)+4sin(l,a) (4

8dr (D, -2d)

t = . (15

n(9) SF(DS—24)5‘.ulészm(Dﬁzd)Z (>
d

f=m, (16)

tan(5)=_8F_(M (17)

16F2 (D, -24)*

We have now defined all the parameters necessary to repre-
sent the displaced-axis Gregorian double-offset duab-reflector
antenna systen.

6. Displaced-axis Cassegrain antennas
6.1. Option 3: Single-offset Cassegrain

The geometry of such a systom is shown in Figure 4, where a
parabolic main reflector is used in conjunction with a hyperbolic
subreflector in a single-offset arrangement, The input parameters
are again D,,, F, D, and &,, and we will express the remaining
design parameters in terms of these input parameters.

For this option, the coordinates of the points 7y, B, 2, (),

(O, R, and R; in the (O, Xyp,Zyp) coordinate system are
given in Table 2. From Equation (10) we can then define I', and
use the root, ¢, of [ in the following relations (see Figure 4):

tan(y) = 8F (D, +2d)

= S rod) (18
1672 (D, + 24} )

Table 2. Option 3: The coordinates of the points for the single-
offset Cassegrain system.

Point X z
e D +2d 2
. (D, +24)" »
1657
0, Dy, +2d (D, +2d)’
2 I6F
A d 2
og| (Ps+2d)”
I6F
Dy +2d
B D, +2d 2
* 2 (D, +24) Dy t2d)"
‘ 16F
D, +2d
e d D, +2dY
(D, + 24){(—%)— -F
|__ D
D, +2d 2tan(4,)
R D, +2d 0
| 2
R, D, +2d 0
2
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Table 3. Option 4: The coordinates of the points for the
doublie-offset Cassegrain system.

Point x 2
Ql Ds+d (Ds+d)2_F
4r
O |DutDst2 | (DD r2dY
2 1657
R d :
Dy +d
P D, +2d 2
—2' (D.S' -I-Zd) &j—ifﬂ_p‘
D, +D,+2d
F D +2d 2
_52_ p £D_‘, +d) _r
4F D,
D +d N 21an(6,)
R, Dy+d 0
RZ Dm + D.\' +2
2
D, D, -D
L _ K3 R g
T2 sin(@e) * 2 sin(y/) ’
(D, +2dY (D, +2dY  16F2D, + D, (D, +2d) 19)
165 1657 (D, +2d)
. d[sz +(D,+ 2:{)2}
g=— e 2 (20)
2 16F (D, +2d )
tan(5) = —r (Dt 24) (1)

16F? — (D, +24)

16F* — (D, +2d)"
4",=)—T(61-;—)—-Ls+(2a—Ls)cos(§), (22)

tan(g) = - ——2

L Za)om(s) (ot 450 @29

L+ (LJ ﬂ2a)cos(5)
2cos(g) '

f= @4

We have now defined all the parameters necessary to represent the
displaced-axis Cassegrain single-offset dual-reflector antenna sys-
tem.

6.2. Option 4: Double-offset Cassegrain
The geometry of such a system is shown in Figure 6, where a

parabolic main refigctor is used in conjunction with a hyperbolic
subreflector in a double-offset arrangement. The input parameters

=

(w) =
z

#3lA gpig 1 wISAS IR RN —IoNG SIX0—pass|dsi]

. L - 1 " —t |

Figure 7. The antenna geomeiry of option 1@ D, =8m,
F=47m, L,=32506m, D,=12m, L,=21702m, ¢ =0m,
a=1.554m, f=0.7843m, 6, =15°.
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Figure 8. The antenna geometry of option 2: D, =8m,
IF'=417m, L,=31382m, Dy=12m, L, =2.4204 m,
d=0.0941m, ¢ =1.6488m, /' =0.7755m, 6, =15°,
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Figure 9. The antenna geometry of optien 3: D, =8m,
F=47m, L, =1.7698 m, D, =12m, L, =2.1256m,
d=0.1196m, a =0.6697m, f=1.4525m, 8,=15°.
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Figure 10. The antenna geometry of option 4:

F=47m,
d=02787m, a=7051m, f =1.6127m, 8, =15°.
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Figure 11. The G/T comparison,
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Figure 12. The radiation patterns at 3.80 GHz.
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Figure 13. The feed/subreflector return loss.

arc again D,

F, Dy, and 8,, and we will express the remaining
design parameters in terms of these input parameters.

For this option, the coordinates of the points Fy, P, P, O,
(s, Ry, and Ry in the (O, Xpp,Zyy) coordinate system are
given in Table 3, From Equation (10), we can then define T", and
use the root, d, of I in the following relations (see Figure 6):

F 2
tan (i ) = %M__ﬂ_z’ (25)
165 ~ (D, + Dy +2d)
p Diar (D, <20)]
LS = .hs— +_
2sin(6,) 4F (D, +d)
(D,+dY b, (DD +2d)
e e, (26)
4F  2sin(p) 165
2
p, A4 +a)]
A=, 27
4sin(8,) 8F (D +d)
tan(ﬁ) = ——4217—(&4——[1)—2 , (28)
472 (D, +d)
2
m =F- (Di +]f) ﬁL.v
D,  (Dy+D,+2d)
— F_ " w & , 29
2sin (y/) i 16F CDS(I,!/) @9
2F (Dy+2d)
tan{g)=— {note that ¢ <0), (30)

4F? (D, +d) —4FL,,

4R (D +d) -4FL,

/= 8F cos(¢) G

We have now defined all the parameters necessary to represent fhe
displaced-axis Cassegrain double-offset dual-reflector antenna
system.

7. Examples

Examples of dual-reflector antennas, designed using the dif-
ferent options, are presented in Figures 7 to 10 for Options 1 to 4.
These four antennas have been designed using the same input
parameters, i.e, D, =8m, F=47m, D, =12m, and &, =15°,
These four antennas have been analyzed over the 3.4-4.2 GHz
band, and compared with equivalent classical Cassegrain and
Gregorian systems in terms of G/T (see Figure 11), radiation
pattern (sce Figure 12), and feed/subreflector return loss (sce Fig-
ure 13). The main conclusion of this brief analysis (using Physical
Optics on both reflectors, and assuming a theoretical Gaussian
feed) is that displaced-axis systems offer better G/7 and
feed/subreflector return-loss performance. On the other hand, the
radiation pattern first sidelobe for the four designs considered is
higher than for the equivalent classical Cassegrain or Gregorian
systems,

8. Conclusions

An casy procedure has been presented for the design in Geo-
metrical Optics of displaced-axis dual-reflector antennas. Four
options are available to the antenna designer. The main advantage
of these antennas is that there is no blockage (from the Geometrical
Optics point of view) by the subreflector, and no or very little
energy is radiated back to the feed aperture by the subreflector.
These antennas can be very useful for designing small antennas (in
terms of wavelength), where the lack of subreflector-blockage can
be a prime consideration.
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